banner



How To Use Pnorm In R

How to use pnorm function on data frame columns in R?


The pnorm function is used to notice the probability for a ordinarily distributed random variable. Probabilities such as less than mean, greater than mean, or probability betwixt left- and right-manus side of the mean. If nosotros want to utilize pnorm office on information frame columns and then apply office can help united states.

Consider the below data frame −

Example

 Live Demo

x1<-rnorm(20,5,0.35) x2<-rnorm(20,5,0.67) x3<-rnorm(20,v,0.04) df1<-data.frame(x1,x2,x3) df1

Output

       x1    x2         x3 ane  4.556392  v.973934   5.018973 ii  5.217397  4.932053   4.975870 iii  5.426464  4.932799   4.962231 four  four.930645  five.297919   5.017925 5  4.773804  4.768619   four.943131 half-dozen  4.963782  4.569909   iv.950701 7  4.925481  v.329717   4.985630 eight  iv.940240  five.871122   5.007031 nine  4.904643  5.270739   five.022102 x 4.652542  five.784937   5.005462 xi 5.089297  4.479673   iv.961000 12 five.619575  4.181733   4.983067 13 4.696906  iv.451156   4.931908 14 5.177524  iv.422826   five.052467 fifteen 5.186783  v.184310   v.015104 xvi 4.497172  5.241887   iv.996715 17 4.689212  5.252937   5.035001 18 five.385772  4.095684   5.035014 19 five.455497  5.142272   v.021073 xx 5.417301  five.025720   v.005374

Applying pnorm on columns in df1 −

Example

apply(df1,2,role(x) pnorm(10,mean=mean(x),sd=sd(x)))

Output

       x1          x2           x3 [1,]  0.07616627  0.96450889   0.75138999 [2,]  0.72115750  0.44156102   0.27056837 [iii,]  0.88960525  0.44211276   0.15403922 [four,]  0.38629544  0.70493965   0.74135388 [5,]  0.22132609  0.32516348   0.05581552 [6,]  0.42550072  0.20448316   0.08623025 [7,]  0.38027932  0.72516490   0.37486428 [8,]  0.39754810  0.94661794   0.62607863 [9,]  0.35630529  0.68712704   0.78009609 [10,] 0.12759048  0.92666438   0.60816173 [11,] 0.57741133  0.15991056   0.14545675 [12,] 0.96515143  0.06018775   0.34616630 [13,] 0.15806523  0.14725726   0.02700442 [14,] 0.67888286  0.13536904   0.95364621 [15,] 0.68893707  0.62769115   0.71330952 [16,] 0.05346986  0.66772918   0.50508628 [17,] 0.15246286  0.67521495   0.87668128 [18,] 0.86438253  0.04322155   0.87676402 [19,] 0.90541682  0.59753060   0.77087289 [20,] 0.88424194  0.51137989   0.60714737

Example

 Live Demo

y1<-rpois(twenty,five) y2<-rpois(20,2) y3<-rpois(20,two) y4<-rpois(xx,5) y5<-rpois(20,10) df2<-data.frame(y1,y2,y3,y4,y5) df2

Output

   y1 y2 y3 y4 y5 1  vii  four  3  iii  10 2  vii  2  2  5  6 three  2  i  four  4  11 4  v  one  2  6  13 five  6  two  3  nine  10 6  vii  4  4  four  7 7  five  3  2  7  fifteen 8  ii  i  ane  3  15 9  3  1  2  4  9 x 4  3  1  four  xv 11 1  4  iv  4  13 12 5  6  4  8  9 xiii iii  0  five  2  fourteen 14 vii  2  one  8  7 xv 6  3  4  five  x sixteen three  2  two  6  xix 17 four  ane  5  5  eleven 18 7  2  one  five  11 19 half dozen  i  2  nine  nine xx iii  3  4  3  ix

Applying pnorm on columns in df2 −

Instance

use(df2,2,function(x) pnorm(x,hateful=mean(x),sd=sd(x)))

Output

           y1        y2         y3           y4         y5 [1,]  0.88543697  0.87874297  0.55840970  0.14362005  0.36298572 [ii,]  0.88543697  0.41829947  0.27834877  0.46146443  0.05825608 [3,]  0.08752759  0.18573275  0.81101173  0.28079874  0.48176830 [4,]  0.57107536  0.18573275  0.27834877  0.65061458  0.71356535 [5,]  0.75517414  0.41829947  0.55840970  0.96698029  0.36298572 [6,]  0.88543697  0.87874297  0.81101173  0.28079874  0.10296979 [vii,]  0.57107536  0.68482707  0.27834877  0.80804251  0.87967779 [viii,]  0.08752759   0.18573275 0.09300983  0.14362005  0.87967779 [9,]  0.19922632  0.18573275  0.27834877  0.28079874  0.25614928 [10,] 0.36970390  0.68482707  0.09300983  0.28079874  0.87967779 [eleven,] 0.03088880  0.87874297  0.81101173  0.28079874  0.71356535 [12,] 0.57107536  0.99451570  0.81101173  0.91220051  0.25614928 [thirteen,] 0.19922632  0.05691416  0.94698775  0.06082067  0.80746817 [fourteen,] 0.88543697  0.41829947  0.09300983  0.91220051  0.10296979 [15,] 0.75517414  0.68482707  0.81101173  0.46146443  0.36298572 [sixteen,] 0.19922632  0.41829947  0.27834877  0.65061458  0.99163233 [17,] 0.36970390  0.18573275  0.94698775  0.46146443  0.48176830 [18,] 0.88543697  0.41829947  0.09300983  0.46146443  0.48176830 [19,] 0.75517414  0.18573275  0.27834877  0.96698029  0.25614928 [twenty,] 0.19922632  0.68482707  0.81101173  0.14362005  0.25614928

raja

Published on 10-Feb-2021 06:21:36

  • Related Questions & Answers
  • How to select data frame columns based on their class in R?
  • How to subset row values based on columns name in R data frame?
  • How to standardize columns in an R data frame?
  • How to standardize selected columns in R data frame?
  • How to add name to information frame columns in R?
  • How to reorder the columns in an R data frame?
  • How to subset factor columns in an R data frame?
  • How to concatenate numerical columns in an R data frame?
  • How to create scatterplot using data frame columns in R?
  • How to apply a manually created function to two columns in an R data frame?
  • How to create a subset of an R data frame based on multiple columns?
  • How to standardize columns if some columns are categorical in R data frame?
  • How to subset rows based on criterion of multiple numerical columns in R data frame?
  • Find the hateful of multiple columns based on multiple grouping columns in R information frame.
  • How to employ 1 sample t-test on all columns of an R information frame?

How To Use Pnorm In R,

Source: https://www.tutorialspoint.com/how-to-use-pnorm-function-on-data-frame-columns-in-r

Posted by: hertzogdair1985.blogspot.com

0 Response to "How To Use Pnorm In R"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel